

TECHNISCHE DOKUMENTATION

PVT SOLAR Leistungsvergleich und Ertragsoptimierung

Leistungsvergleich Hybridkollektoren

Leistungsvergleich Hybridkollektoren						
G" = 915 W		BlackDiamond	Silverstar	Skyslate Hybrid 300 W		
		BSM-425	SL-270 i			
			integral	mit Vakuum	real	ohne Vakuum
Fläche	m2	1.95	1.425	1.64	1.64	1.64
Gesamtleistung pro Modul	W	1400	1000	1160	1105	1050
Gesamtleistung pro m2	W/m2	718	702	707	674	640
Leistung elektrisch	W	425	270	300	300	300
Leistung elektrisch pro m2	W/m2	218	189	183	183	183
Leistung thermisch bei DT0	W	975	730	860	805	750
Leistung thermisch pro m2	W/m2	500	512	524	491	457
Eta Ohem, mpp		0.55	0.56	0.57	0.53	0.49
Differenz						
Stagnationstemperatur zu						
Umgebungstemperatur	°C	38	33	40	37	34
Bautyp:						
BlackDiamond:	Tube: Kupfer; Sheet: Alu-Sattelprofil 1.5mm					
Silverstar:	Chromstahl vollflächig durchströmt					
Skyslate:	Tube: Alu; Sheet: Alu 0.5mm					

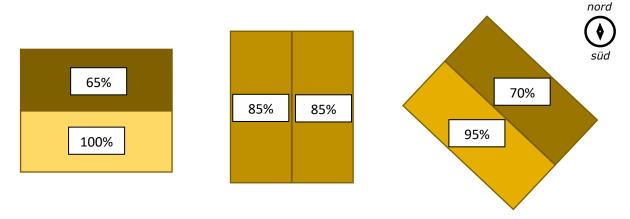
Alle Werte wurden im Oktober 2022 vom SPF in Rapperswil gemessen und im Direktvergleich ermittelt

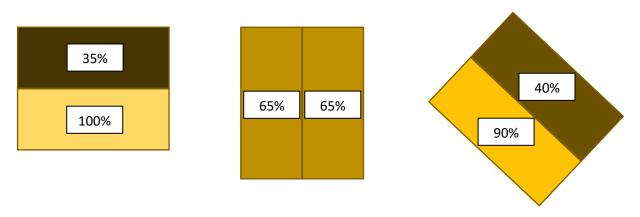
Leistungs- und Ertragsoptimierung

Grundsätzlich kann man sagen, dass ein Steildach Richtung Süd-Ost bis Süd-West die besten Erträge abwirft – sofern dies die Verschattung durch Horizont oder Nachbargebäude oder Bäume nicht in Frage stellt.

Ein Hauptaugenmerk ist auf die Verschattung zu richten: Dazu mehr im Dokument «Verschattung von Hybridkollektoren». Verschattungssituationen sind zu vermeiden, Sie wirken immer Leistungs-, Ertrags- und Lebensdauervermindernd!

Ein weiterer, in der Regel vernachlässigter Punkt, ist das Augenmerk auf die Winter-Ertrags-Situation. Im Sommer ist Strom im Überfluss vorhanden, im Winter Mangelware. Das wird sich immer mehr auch auf der Strompreis-Seite bemerkbar machen. Es macht also keinen Sinn den Jahresertrag zu maximieren, wenn dies zu Lasten des Winterertrages geht, auch wenn die aktuellen Tarifmodelle das (noch) nicht honorieren.


Zuletzt ist auch die verfügbare Dachfläche ein beschränktes Gut, da macht sich die optimale Ausnutzung bezahlt.


Ertragssituation Steildach

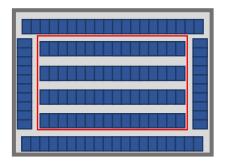
Steildächer sind in der Regel einfach zu planen: Möglichst Richtung Süden, möglichst weit oben an der First: Schnee rutscht besser ab, weniger Verschattung, höherer Winter-Ertrag.

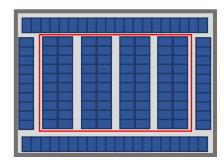
Beispiel Satteldach mit unterschiedlicher First-Richtung, **Jahres-Ertrag** pro Dachhälfte bei 24° Dachneigung, ohne Verschattung:

Gleiches Beispiel, aber nur **Winter-Ertrag** von 1. November bis 1. März:

Je höher die Dachneigung, desto grösser der Effekt!

Die Darstellung gilt für den Elektrischen Ertrag, wie auch für den (theoretischen) Thermischen Ertrag. Nur ist im Winter der Bedarf an Thermischer Energie höher und immer ein Abnehmer zur Verfügung. Im Sommer ist der Ertrag höher, aber der Bedarf kleiner, d.h. im Sommer ist der Thermische Ertrag nur theoretisch, einfach solange auch ein Abnehmer (Saisonale Speicherung) zur Verfügung steht!

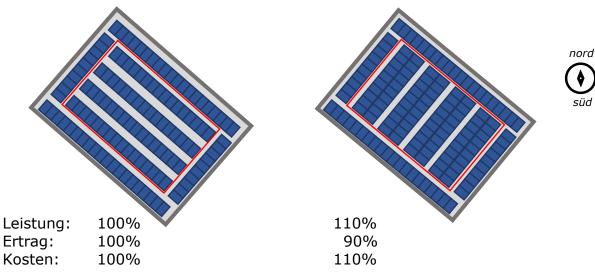

Für die Gesamtleistung ist also die Winterbilanz massgeblich und deshalb die Ost-Süd-West – Orientierung wichtig!



Ertragssituation Flachdach

Beim Flachdach ist eine möglichst hohe Flächenausnützung wichtig, da dies in der Regel bei mehrgeschossigen Bauten häufiger vorkommt und das Verhältnis von Dachfläche zu Energiebedarf grösser ist.

Eine Ost-West-Ausrichtung der Module ist deshalb beliebt, weil sie eine grössere Flächenbelegung erlaubt.



Leistung: 100% Ertrag: 100% Kosten: 100% 110% 100% 110%

Wenn das Dach aber nicht nach Süden ausgerichtet ist, wird bei einer Ost/West-Anordnung der «Nord-Anteil» und Ertragseinbruch insbesondere im Winter aber von zunehmender Bedeutung. Deshalb raten wir eher zu einer Süd/Ost- resp. Süd/West-Ausrichtung

