

SPF Institute for Solar Technology Eastern Switzerland University of Applied Sciences (OST) CH-8640 Rapperswil www.spf.ch, T: +41 58 257 48 21

Test Report No. C1916

Solar thermal collector (liquid heating) PVT collector Standards: ISO 9806:2017, EN 12975:2022

Collector model:

Black Diamond BSM-425

Test ordered by:

PVT Solar AG Dorfstrasse 45 CH 6036 Perlen Switzerland

Manufacturer:

PVT Solar AG Dorfstrasse 45 CH 6036 Perlen Switzerland

Remarks:

The content of this test report shall not be modified. The test methods applied fulfil the requirements of ISO 9806:2017. The rating of the test results fulfils the requirements of EN 12975:2022. The results given in this report relate to the tested sample(s) only. This report is following the requirements of ISO 9806:2017, EN 12975:2022. This test report fulfils the requirements of ISO 17025.

Rapperswil, 08. February 2024

Dr. Andreas Bohren Head of SPF Testing

INSTITUT FÜR SPF SOLARTECHNIK

1 Summary and main results

Clause in ISO 9806:2017 / Test				Date				Resu	lts/Obs	ervatio	ons	
	Random sampling			29.11	.2022						-	
	Delivery of test sample(s)			30.11	.2022			ok			-	
	Initial visual inspection			30.11	.2022			ok			0	
6	Maximum operati	ng pres	sure		09.05	.2023			6 bar			0
9	Standard stagnati	on tem	peratur	e	24.01	.2023 -	- 02.05	5.2023	70°C			0
10	Exposure or half-	exposu	re		See c	lause 2	2.1		ok			0
11	External thermal s	shock	1/2		NR							0
12	Internal thermal s	hock 1	/ 2		19.04	.2023 /	/ 19.04	.2023	Clima	te class	s A	0
13	Rain penetration				09.05	.2023			ok			0
14	Freeze resistance	;							NR			-
15	Mechanical load (positive	e)		22.06	.2023			3000	Pa		0
15	Mechanical load (negativ	e)		22.06	.2023			3000	Pa		0
16	Impact Resistance	е			10.05	.2023			35 mr	n		0
27	Pressure drop				12.04.2023		ok		-			
19	Thermal performance 24.01.2023 – 02.05.2023				0							
	A _G Collector gross area1.95 m²						-					
	$\eta_{0,hem}$ Collector efficiency based on hemispherical irradiance 0.512						-					
	$\eta_{0,b}$ Peak collector efficiency based on beam irradiance 0.517							-				
	Kd Incidence angle modifier for diffuse solar radiation0.94						-					
	a ₁ Heat loss coefficient 21.30 Wm ⁻² K ⁻¹					-						
	a ₂ Temperature dependence of the heat loss coefficient 0.0083 Wm ⁻² K					K-2	-					
	a ₃ Wind speed dependence of the heat loss co				s coef	ficient		2.649	Wsm ⁻³	K ⁻¹	-	
	a₄ Sky tempera	ature de	epende	ence of	the hea	at loss	coeffic	ient	0.49			-
	a₅ Effective the	ermal ca	apacity	incl. flu	uid (C/	A _G)			14'64	2 Wsm	⁻² K ⁻¹	-
	a ₆ Wind speed dependence of the zero-loss efficiency 0.000 sm ⁻¹			sm ⁻¹		-						
	a ₇ Wind speed	depen	dence	of IR ra	adiation	excha	inge		0.00 s	sm⁻¹		-
	a ₈ Radiation lo	sses							0.000	Wm ⁻² K	- 4	-
	Average flowra	ate durii	ng the	measu	rement				140 lh ⁻¹		-	
26	Incidence angle	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	
26	$K_b(\theta_T,0)$	0.00	1.00	1.00	1.00	0.99	0.98	0.93	0.83	0.58	0.00	-
26	$K_b(0, \theta_L)$	0.00	1.00	1.00	1.00	0.99	0.98	0.93	0.83	0.58	0.00	-
25	Time constant				09.02	.2023			241 s			-
17	Final inspection				10.05	.2023			ok			0

Table 1: Summary of results

The validity and authenticity of this report can be checked anytime ort Name: iC1916.pdf www.spf.ch/i-Report

INSTITUT FÜR SPF SOLARTECHNIK

С	onte	ent	page
1	Sur	mmary and main results	
2		roduction	
	2.1	Remarks on the test sequence	
	2.2	Test standards	
	2.3	Manufacturer information	
	2.4	Specific abbreviations and formats used in the report	
	2.5	Test location, instrumentation and test devices	
3	Col	llector descriptions	
	3.1	Sample identification	5
	3.2	Collector mounting possibilities	5
	3.3	Protection mechanisms and integrated electrical components	
	3.4	Operational range	
	3.5	Dimensions and general information	5
	3.6	Specifications on elements	6
	3.7	Technical documentation and safety requirements (EN 12975:2022)	8
4	Tes	st conditions and results	
4	4.1	General remarks	10
4	4.2	Sampling	10
4	4.3	Internal pressure test for fluid channels	10
4	4.4	Determination of standard stagnation temperature	10
4	4.5	Exposure test	11
4	4.6	External thermal shock test	12
4	4.7	Internal thermal shock test	12
4	4.8	Rain penetration test	13
4	4.9	Freeze resistance test	13
4	4.10	Mechanical load test	13
4	4.11	Impact resistance test	14
4	4.12	Performance test results	
4	4.13	Incidence angle modifier	
4	4.14	Effective thermal capacity	
4	4.15	Time constant	19
4	4.16	Pressure drop measurements	20
4	4.17	Gross Thermal Yield (GTY)	
	4.18	Gross Electric Yield (GEY)	
	4.19	Final inspection	
An	nex /		
	nex l	U 1	
An	nex (C PV Module datasheet	29

2 Introduction

SPF

2.1 Remarks on the test sequence

Testing of PVT collector according to ISO 9806:2017 and the Solar Keymark Scheme Rules R6 Edition 2022-06-02 and Annex P5.1, R2 Edition 2021-01-18. All the PV related tests are performed by SUPSI (SUPSI test report 23-042-A-REP2-rev1) to confirm compliance with the relevant PV standards. Considering clause 11 of Annex P5.1, the out-door exposure test of the ISO 9806:2017 was replaced by the damp heat (MST 53/MQT 13) and the thermal cycling test (MQT 11).

2.2 Test standards

The collector was tested according to the standards

- ISO 9806:2017
- EN 12975:2022

Complementary information which is not required by these standards is specifically marked.

2.3 Manufacturer information

All manufacturer information in this report was plausibility checked by the test laboratory and is not specifically marked anymore.

2.4 Specific abbreviations and formats used in the report

- NR Not required, not relevant
- NA Not applicable
- NS Not specified
- NT Not tested
- -- No result as test was not performed
- 0 No problem (description see 0)
- 1 Minor problem (description see 0)
- 2 Major failure (description see 0)

Date and time is always indicated in the format (if applicable) DD.MM.YYYY HH:MM:SS

Indications about tilt angle and collector inclination are always measured from horizontal. Length always denotes the distance in vertical (south-north) direction as tested Width always denotes the distance in horizontal (east-west) direction as tested.

Some of the thermal performance parameters may be set to zero as described in the ISO 9806:2017: In this case a result of 0 is indicated with the number of trailing zeros as required for this parameter.

The term "water-glycol" is used for a 33.3 Vol-% ethylene-glycol mixture with water.

2.5 Test location, instrumentation and test devices

All tests are performed in the premises and on the testing field of the SPF Institute for Solar Technology of the Eastern Switzerland University of Applied Sciences (OST) in CH-8640 Rapperswil

The instrument types, specifications, serial numbers and calibration status of the instruments and test devices which were used to make the measurements and tests for this test report are filed in an internal database at the test laboratory. Upon request all this information can be made available as required by the ISO 17025.

3 Collector descriptions

3.1 Sample identification

Name of manufacturer	PVT Solar AG
Collector name	Black Diamond BSM-425
Additional brand names (if applicable)	None
Collector type	PVT collector
Serial No of test sample(s)	BSM220627106620AK / BSM220627106661AK
Serial product	Yes
Photograph(s) of the collector(s)	See Figure 6
Remarks	None
Specific comments on the collector design:	None

3.2 Collector mounting possibilities

On tilted roof	Yes
Horizontal installation	No
In tilted roof	No
Façade	No
On Stand (ground / flat-roof)	Yes
Schematic diagram of collector mounting	See Figure 9

3.3 Protection mechanisms and integrated electrical components

Description and technical details of integrated electrical components	NA
Self-protecting collector as defined in ISO 9806:2017 Clause 5.2.2	No
Freeze resistant collector as defined in ISO 9806:2017 Clause 14.2	No
Freeze resistant heat pipes as defined in ISO 9806:2017 Clause 14.3	No
Description of protection mechanism(s)	NA

3.4 Operational range

Minimum / Maximum operation temperature	-40 / 85 °C
Maximum operation pressure (at maximum temperature of operation)	4x10 ⁵ Pa (4 bar)
Minimum / Maximum installation inclination	6° / 90°
Recommended heat transfer fluid(s)	water-glycol
Additional remarks concerning the heat transfer fluid(s)	None
Flow rate minimum / recommended / maximum	50 / 150 / 200 lh ⁻¹
Other limitations	None

3.5 Dimensions and general information

Gross length (length from bottom to top, orientation as tested)	1722 mm
Gross width (width from left to right, orientation as tested)	1134 mm
Gross height	30 mm
Gross area, A _G (as defined in ISO 9488)	1.95 m ²
Aperture area, A _{Ap} (as defined in ISO 9488)	1.89 m ²
Absorber area, A _{Abs} (as defined in ISO 9488)	1.89 m ²
Weight empty	35 kg
Fluid content (with connecting tubes)	2.16 I

3.6 Specifications on elements

3.6.1 Collector cross section

Figure 1: Collector cross section

Legend

- 1 Frame / PV Module
- 2 Absorber
- 3 Absorber fixing profile
- 4 Hydraulic system

3.6.2 Frame, enclosure, casing

Legend No Construction type **Enclosure** material Thickness Joining method

3.6.3 PV-Module

Legend No Type P_{max} Temperature Coefficient Pmax Datasheet

3.6.4 Thermal absorber (backside of PVT)

Legend No Material Number of absorber elements (fins, tubes, etc.) Distance between absorber elements Absorber element length / width Absorber total length / width Absorber thickness Absorber coating Absorber coating trade name Solar absorptance α / hemispherical emittance ϵ Bond between riser and fin/plate

3.6.5 Hydraulic system

Legend No Flow pattern Number of risers **Riser material Riser length**

1 Casing (PV Module) Aluminium extruded profiles 1.3 mm Glued corners with corner joints

1

BSM425G12-54HPH 425 W -0.35%/°C see Annex C

2

Aluminium 18 93 mm 93 / 984 mm 1581 / 984 mm 1.0 - 1.4 mm None None Glued and clamped

Δ

Meander, See Figure 8 1 Copper 22360 mm

The validity and authenticity of this report can be checked anytime www.spf.ch/i-Report Name: iC1916.pdf

Password: PA48kv7g

Riser diameter outer / inner Distance between risers Manifold material Manifold length Manifold diameter outer / inner Collector hydraulic connector type/size

3.6.6 Transparent cover(s)

Legend No Material Number of serial glazing Thickness Diameter (for tube collectors only) outer / inner Solar transmittance Glazing surface characteristics

3.6.7 Other elements

Absorber fixation (Legend No. 1) Gluing between absorber und PV module (not visible) 8.0 / 7.0 mm 93 mm ---- mm -- mm Corrugated tube 12 mm

> Not visible Tempered glass 1 4.6 mm --- / -- mm unknown structured

> > Aluminium EPDM

3.7 Technical documentation and safety requirements (EN 12975:2022)	
3.7.1 Labelling The collector carries a visible and durable label.	Yes
3.7.1.1 Mandatory information on the label	
Name of manufacturer	Yes
Model	Yes
Serial number	Yes Yes
Year of production (can be included in the serial number) Peak power	Yes
Maximum operating pressure	Yes
Weight of empty collector	Yes
Volume of heat transfer fluid	Yes
3.7.2 Safety	
The collector provides for safe installation and mounting. It has no sharp edges,	
no loose connections, and no other potentially dangerous features	Yes
If the weight of the empty collector exceeds 60 kg an anchorage for a lifting	
device is included, except for collectors that are assembled on the roof	Yes
If the collector is made to be filled with a heat transfer fluid that is irritant to	
human skin or eyes or that is toxic, the collector carries a warning label	Yes
3.7.3 Installer instruction manual and/or technical datasheet	
The collector is accompanied by an installer instruction manual	Yes
3.7.3.1 Information included in the installer instruction manual	
Dimensions	Yes
Weight of the collector	Yes
Instructions about the transport and handling	Yes
Stagnation temperature at 1000 W/m ² and 30 °C Description of the mounting procedure	Yes Yes
Recommendations about lightning protection	Yes
Instructions about the coupling of the solar collectors to one another	Yes
Instruction on the connection of the solar collector field to the heat transfer circuit	Yes
Instruction on dimensions of pipe connections for solar collector arrays	Yes
Reminder to follow the national requirements for the thermal insulation of the piping	Yes
Instructions about the heat transfer media which shall be used	Yes
Instructions and precautions which shall be taken during filling, operation and service	Yes
Pressure drop	Yes
Maximum and minimum tilt angle	Yes
Maximum operating pressure Maximum operating temperature	Yes Yes
Permissible positive and negative mechanical load	Yes
Maintenance requirements, including specific cleaning procedures if required	Yes
Indications about the requirements concerning free airflow on the backside of the collector	Yes
Indication on the impact resistance	Yes
Declaration of the climate class for testing	Yes

The validity and authenticity of this report can be checked anytime ort Name: iC1916.pdf

www.spf.ch/i-Report

3.7.3.2 Information for building integrated collectors only

······································	
The collector can be used in building integrated systems as part of the building shell	No

If the collector can be integrated in the roof or in the building shell, the following recommendations shall be included in the instruction manual, to be considered when the collector is integrated in the roof or in the building shell.

Permanent stagnation over longer periods shall be avoided. The stagnation time between installation and commissioning of the	NA
system shall be less than one month.	NA
Ventilation behind the collector casing shall be sufficient and	
in accordance with national regulations and building codes.	NA
No additional isolation shall be added to the rear side of the collector.	NA
Piping near the collector shall be installed and isolated such that they	
are not in contact with wood or other inflammable materials.	NA
Preventive measures shall be taken to avoid that a leaking connection	
may lead to ingress of heat transfer fluid into the collector.	NA

3.7.4 Drawings and specifications

A complete set of technical drawings and datasheets has been submitted	Yes
Technical drawings and specifications	See Annex B

4 Test conditions and results

4.1 General remarks

Description of self-protection mechanism and description of adapted test procedure (for self-protecting collectors only, ISO 9806:2017, clause 5.2.2.3) NA

4.2 Sampling

· •	
Sampling of the collector	From stock according to the Solar Keymark Scheme rules
	FIGHT SLOCK according to the Solar Revinark Scheme rules
	······································

4.3 Internal pressure test for fluid channels

4.3.1 General remarks Test performed	Yes
4.3.2 Test condition Test fluid Test temperature Maximum test pressure Test duration	Water 20 °C ± 15 °C 9 bar ≥15 min
	-10 1111

4.3.3 Test results

Any evident problems, damages and failures according to ISO 9806:2017 Clause 17	None
Other observations and remarks	None

4.4 Determination of standard stagnation temperature

4.4.1 General remarks

Test performed Yes One of the methods described in ISO 9806:2017 Clause 9.3 and Clause 9.4 can be used if the conditions described therein are fulfilled.

The standard stagnation temperature is reported in an up rounded 10 °C resolution.

4.4.2 If measured according to ISO 9806:2017 Clause 9.3

Test location	NA
Collector inclination	
Average hemispherical irradiance	Wm ⁻²
Location for temperature sensor	
Fluid specifications, flow rate, fluid temperature (if a fluid was circulated)	
Any evident problems, damages and failures according to ISO 9806:2017 Clause 17	
Observations and remarks:	
4.4.3 If determined according to ISO 9806:2017 Clause 9.4	
Maximum relative power output (Q/Q _{peak})	-0.0449
Irradiance at maximum relative power output	813.5 Wm ⁻²

4.4.4 Test results

Standard stagnation temperature at 1000 W/m² and 30 °C

70 °C

4.5 Exposure test

4.5.1 General remarks Test performed Test type	No See remark on the test sequence under 2.1
4.5.2 Test conditions Climate class Irradiance G Ambient air temperature ϑ_a Irradiation on collector H_x	A ≥1000 Wm ⁻² ≥20 °C ≥600 MJ/m ²
 4.5.2.1 Outdoor exposure Location for initial outdoor exposure Collector tilt angle during initial outdoor exposure Collector azimuth angle during initial outdoor exposure Test date Collector tested as façade collector Test date in vertical position Number of days in vertical position Location of temperature measurement Total days of outdoor exposure Total Hemispherical irradiation on collector Total time with conditions resulting in absorber temp 	 No No sensor days MJm ⁻²
4.5.2.2 Additional exposure test using a fluid loo Remark	op Method not used
Fluid used Flow rate Fluid temperature Test date Location of temperature measurement Total time with conditions resulting in absorber temp	 kgh-1 °C
 4.5.2.3 Additional exposure test using a solar si Remark Average radiation on collector plane Average ambient temperature Test date Location of temperature measurement: Total hemispherical irradiation on collector (incl. initia Total time with conditions resulting in absorber temp 	Method not used al outdoor exposure)
4.5.3 Test results Any evident problems, damages and failures accord Other observations and remarks	ing to ISO 9806:2017 Clause 17 None None

4.6 External thermal shock test

4.6.1 General Remarks Test performed	No
4.6.2 Test conditions Climate class tested	
4.6.2.1 Shock (1) Test method Collector tilt angle Irradiance during test average / minimum Ambient air temperature average / minimum	 ° / Wm ⁻² / °C
4.6.2.2 Shock (2) Test method Collector tilt angle Irradiance during test average / minimum Ambient air temperature average / minimum	 ° / Wm ⁻² / °C
4.6.3 Test results Any evident problems, damages and failures according to ISO 9806:2017 C Observations and remarks	Clause 17
4.7 Internal thermal shock test	
4.7.1 General remarks Test performed	Yes
4.7.2 Test conditions Climate class tested	Climate Class A
 4.7.2.1 Shock (1) Test method Solar simulator, collector under stagnation conditions for ≥ 1 Collector tilt angle Irradiance during test average / minimum Ambient air temperature average / minimum 	1 h before cold flushing 45° 1002.0 / 1001.2 Wm ⁻² 25.7 / 25.2 °C
4.7.2.2 Shock (2) Test method Solar simulator, collector under stagnation conditions for ≥ 1 Collector tilt angle Irradiance during test average / minimum Ambient air temperature average / minimum	1 h before cold flushing 45° 1005.2 / 1003.4 Wm ⁻² 27.0 / 26.8 °C
4.7.3 Test results Any evident problems, damages and failures according to ISO 9806:2017 C	Clause 17 None

Observations and remarks

None

4.8 Rain penetration test	
4.8.1 General remarks Test performedYe	s
4.8.2 Test conditions Description of collector mounting Collector tilt angleopen ri1010Number and position(s) of spray nozzles as defined in Fig. 2 and Fig. 3 of the ISO 9806:2017	-
4.8.3 Test results Any evident problems, damages and failures according to ISO 9806:2017 Clause 17Observations and remarks	-
4.9 Freeze resistance test	
4.9.1 General remarks Test performedN	0
4.10 Mechanical load test	
4.10.1 Positive pressure test	
4.10.1.1 General remarksTest performedYe	s
4.10.1.2 Test conditions See AnnexDescription of the collector mounting kit used in the testSee AnnexTest method used to apply positive pressurePneumatic actuators with suction cup	
4.10.1.3 Test results2400 PMaximum test load without damage2400 PAny evident problems, damages and failures according to ISO 9806:2017 Clause 17NonObservations and remarksNon	е
4.10.2 Negative pressure test	
4.10.2.1 General remarkTest performedYe	s
4.10.2.2 Test conditions See AnnexDescription of the collector mounting kit used in the testSee AnnexTest method used to apply negative pressurePneumatic actuators with suction cup	
4.10.2.3 Test results2400 PMaximum negative test load without damage2400 PAny evident problems, damages and failures according to ISO 9806:2017 Clause 17NonObservations and remarksNon	е

None

4.11 Impact resistance test

Observations and remarks

4.11.1 General remarks Test performed	Yes
4.11.2 Test conditions Test method Impact direction	ice balls horizontally
4.11.3 Test results Maximum ball diameter without damage (if ice ball testing) Maximum drop height (1 digit precision) without damage (if steel ball testing) Any evident problems, damages and failures according to ISO 9806:2017 Clause 17	35 mm N/A None

Tracked

-- / -- / -- Wm⁻²

-- / -- / -- Wm⁻²

NR

-- mm

4.12 Performance test results

4.12.1 General remarks Parameters measured	Yes
4.12.2 Collectors using external power sources (ISO 9806:2017 Clause 5.2.2.2) Description of the required external power source Estimation of the energy consumption under normal operation:	N/A N/A
4.12.3 Thermal output measurements	

4 12 3 1 Test conditions

4.12.3.1 Test conditions	
Preconditioning	Yes
Test method	Steady-state outdoor
Heat transfer fluid for testing	Water-glycol
Wind generator	Yes
Orientation of the collector during test	Portrait
4.12.3.2 Outdoor testing	
Test location	CH-8640 Rapperswil, 47.2 °N / 8.8 °O, 417 MAMSL

4.12.3.3 Indoor testing (if applicable)

Collector orientation

Type of lamps
Irradiance minimum / mean / maximum
Grid spacing for measuring irradiance data
Thermal irradiance* minimum / mean / maximum

4.12.4 Thermal performance reporting

4.12.4.1 Collector performance coefficients (based on gross area A_G)

The following collector coefficients shall be used for all thermal output calculations.

Collector performance coefficients	Result	Unit
A _g Collector gross area	1.95	m ²
$\eta_{0,hem}$ Collector efficiency based on hemispherical irradiance	0.512	
$\eta_{0,b}$ Peak collector efficiency based on beam irradiance	0.517	
K _d Incidence angle modifier for diffuse solar radiation	0.94	
a ₁ Heat loss coefficient	21.30	Wm ⁻² K ⁻¹
a ₂ Temperature dependence of the heat loss coefficient	0.0083	Wm ⁻² K ⁻²
a ₃ Wind speed dependence of the heat loss coefficient	2.649	Wsm ⁻³ K ⁻¹
a ₄ Sky temperature dependence of the heat loss coefficient	0.49	
a ₅ Effective thermal capacity incl. fluid (C/A _G)	14642	Wsm ⁻² K ⁻¹
a ₆ Wind speed dependence of the zero-loss efficiency	0.000	sm ⁻¹
a7 Wind speed dependence of IR radiation exchange	0.00	sm ⁻¹
a₀ Radiation losses	0.000	Wm ⁻² K ⁻⁴
Average flowrate during the measurement	140	lh⁻¹

Where $\eta_{0,hem} = \eta_{0,b} (0.85 + 0.15 \text{ K}_d)$ according to ISO 9806:2017 Annex B.

The validity and authenticity of this report can be checked anytime www.spf.ch/i-Report Name: iC1916.pdf

4.12.4.2 Power output per collector unit under SRC

The thermal output (Table 3) under standard reporting conditions (SRC) for the tested collector is calculated using formula:

$$\dot{Q} = A_{\rm G} \begin{bmatrix} \eta_{0,b} K_{\rm b} (\theta_{\rm L}, \theta_{\rm T}) G_{b} + \eta_{0,b} K_{\rm d} G_{\rm d} - a_{1} (\theta_{\rm m} - \theta_{\rm a}) - a_{2} (\theta_{\rm m} - \theta_{\rm a})^{2} - a_{3} u' (\theta_{\rm m} - \theta_{\rm a}) + B_{\rm a} \\ a_{4} (E_{\rm L} - \sigma T_{\rm a}^{4}) - a_{5} (d\theta_{\rm m}/dt) - a_{6} u' G - a_{7} u' (E_{\rm L} - \sigma T_{\rm a}^{4}) - a_{8} (\theta_{\rm m} - \theta_{\rm a})^{4} \end{bmatrix}$$

where $u' = u - 3 \text{ ms}^{-1}$ and

Climatic conditions	Blue sky	Hazy sky	Grey sky
G _b	850 Wm ⁻²	440 Wm ⁻²	0 Wm ⁻²
G _d	150 Wm ⁻²	260 Wm ⁻²	400 Wm ⁻²
θ _a	20 °C	20 °C	20 °C
$E_L - \sigma \cdot \vartheta_a^4$	-100 Wm ⁻²	-50 Wm ⁻²	0 Wm ⁻²
u	1,3 ms ⁻¹	1,3 ms ⁻¹	1,3 ms ⁻¹

Table 2: Standard rating conditions (SRC)

ϑ _m – ϑ _a [K]	ϑ տ [°C]	Blue sky [W]	Hazy sky [W]	Grey sky [W]
-10	10	1229	968	705
0	20	904	642	379
10	30	574	313	50
20	40	242		
30	50			

 Table 3: Power output under standard rating conditions (SRC)
 Image: Conditional Standard Sta

Maximum measured temperature difference	30.7 K
Power output data are valid for the maximum temperature difference	60 K
Peak Power per unit	904 W

Figure 2: Power output per collector

4.13 Incidence angle modifier

4.13.1 General remarks

Parameters measured

4.13.2 Test conditions

Test method Location

4.13.3 Test results

Mathematical model for the transversal incidence angle modifier $K_T(\theta)$: Mathematical model for the longitudinal incidence angle modifier $K_L(\theta)$: Diffuse incidence angle modifier constant K_d (see ISO 9806:2017 Annex B) Ambrosetti

Tracked steady state

Ambrosetti 0.94

Outdoor

Yes

	0	10	20	30	40	50	60	70	80	90
Κ _b (θ _T ,0)	1.00	1.00	1.00	1.00	0.99	0.98	0.93	0.83	0.58	0.00
$K_{b}(0,\theta_{L})$	1.00	1.00	1.00	1.00	0.99	0.98	0.93	0.83	0.58	0.00

Table 4: table of incidence angle modifiers

BC-MRA

Figure 3: Incidence angle modifier

4.14 Effective thermal capacity

4.14.1 General remarks

Parameters measured

Yes

The effective thermal capacity is determined using two different methods of the ISO 9806:2017. In general, the lower of the two values is used for further performance calculations. The difference between the two methods is strongly depending on the collector type.

4.14.2 Measurement of the effective thermal capacity with irradiance

4.14.2.1 Test conditions

Test method	Measured according to ISO 9806:2017 Clause 25.2
lootinoulou	

4.14.2.2 Test results

Effective heat capacity (including fluid) Fluid Effective heat capacity (without fluid) 31053 Wsm⁻²K⁻¹ water-glycol 26814 Wsm⁻²K⁻¹

4.14.3 Calculation method for the determination of the effective thermal capacity

4.14.3.1 Test conditions Test method	Calculated according to ISO 9806:2017 Clause 25.4
4.14.3.2 Test results Effective heat capacity (including fluid)	14642 Wsm ⁻² K ⁻¹

Effective heat capacity (including fluid) Fluid Effective heat capacity (without fluid)

14642 Wsm⁻²K⁻¹ water-glycol 10403 Wsm⁻²K⁻¹

4.15 Time constant

4.15.1 General remarks Parameter measured	Yes
4.15.2 Test conditions Test method	ISO 9806:2017 Clause 25.1, Heating up

4.15.3 Test results Time constant, T_c

241 s

4.16 Pressure drop measurements

4.16.1 General remarks

Parameter measured

The pressure drop was measured with the manufacturers corrugated tube connectors. Upon request the tubes were intentionally twisted to the maximum. The pressure drop was measured at different temperatures from 0°C to 30°C. As a comparison, the measurement was repeated with a straight corrugated tube.

4.16.2 Test conditions

Fluid used for the measurement Fluid Temperatures (twisted tube) Fluid Temperatures (straight tube) water-glycol 0,10,20,30 °C 0 °C

Yes

4.16.3 Test results

Temperature (°C)	0 (straight)	0 (twisted)	10 (twisted)	20 (twisted)	30 (twisted)
Coefficient a (Pahl-1)	97.6076	90.1658	58.96687	35.10506	23.416
Coefficient b (Pah ² l ⁻²)	0.209301	0.252351	0.32618	0.378708	0.387643

Table 5: Pressure drop coefficients

The pressure drop for the tested collector using the test fluid is calculated using formula:

$$\Delta p = a\dot{V} + b\dot{V}^2$$

Pressure drop Pa - I/h	50	100	150	200	250
0 (straight)	5404	11854	19350	27894	37483
0 (twisted)	5139	11540	19203	28127	38313
10 (twisted)	3764	9158	16184	24841	35128
20 (twisted)	2702	7298	13787	22169	32446
30 (twisted)	2140	6218	12234	20189	30082

Table 6: Table of pressure drop data (Pascal)

Figure 4: Pressure drop

4.17 Gross Thermal Yield (GTY)

The gross thermal yield of the collector is calculated at the indicated mean fluid temperature ϑ_m for the standard locations Athens, Davos, Stockholm and Würzburg.

		Athens	ns		Davos		Stockholm			Würzburg		
Annual irradiation on collector plane	1765 kWh/m²		1630 kWh/m²		1166 kWh/m²			1244 kWh/m ²				
Mean annual am- bient air temp.	18.5°C		3.2°C		7.5°C			9.0°C				
Orientation	So	outh, 2	5°	South, 30°		South, 45°		South, 35°				
ϑm	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C
GTY (kWh/coll)	1177	23	-	283	-	-	331	1		392	4	-
GTY/A _G (kWh/m ²)	604	12	-	145	-	-	170	1	-	201	2	-
ΣGTY/A _G	1135 kWh/m ²											

 Table 7: Gross thermal yield figures for selected locations

If the collector is member of a family as defined in C.1.2 of the EN 12975:2022, then the sum $\Sigma GTY/A_G$ of the GTY's at the operating temperatures 25 °C, 50 °C and 75 °C at the four reference locations Würzburg, Stockholm, Davos and Athens, divided by the gross area of the collector shall be considered to determine the performance parameters of the whole family.

4.18 Gross Electric Yield (GEY)

The gross electric yield of the collector is calculated at the indicated mean fluid temperature ϑ_m for the standard locations Athens, Davos, Stockholm and Würzburg.

		Athens			Davos			Stockholm			Würzburg		
Annual irradiation on collector plane	1765 kWh/m²		1630 kWh/m²		1166 kWh/m²			1244 kWh/m ²					
Mean annual am- bient air temp.	18.5°C		3.2°C		7.5°C			9.0°C					
Orientation	So	outh, 2	5°	So	South, 30°		South, 45°		South, 35°				
ϑ _m	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	
GEY (kWh/coll)	739	675	610	686	626	566	487	445	402	521	475	430	
GEY/A _G (kWh/m ²)	379	346	313	352	321	290	250	228	206	267	244	220	

Table 8: Gross electric yield figures for selected locations

4.19 Final inspection

4.19.1 Test conditions

The collector was dismantled and inspected completely under laboratory conditions, i.e. in a nonoperating condition, shaded from sunlight and at room temperature. Following the list in Table 9 but not limited to, all defects and abnormalities are documented and rated where applicable according to the following key as defined in ISO 9806:2017 Clause 17. Pictures of minor and major failures (if applicable) in 4.19.2

Collector component: Potential problem	Evaluation
a) Collector box/fasteners: Cracking/warping/corrosion/rain penetration/ permanent deformation / accumulation of humidity / etc.	0
b) Mountings/structure: Strength/safety/loosening/fatiguing/etc.	0
c) Seals/gaskets: Cracking/loss of adhesion/elasticity/brittleness/etc.	0
d) Cover: Cracking/breaking/crazing/buckling/delamination/permanent warping and deformation/outgassing/etc.	0
e) Absorber as a whole: Deformation/corrosion/buckling/etc.	0
f) Absorber coating: Cracking/crazing/blistering/discolouration/peeling/flaking/etc.	0
g) Reflectors: Deformation/cracking/crazing/blistering/discolourtion/buckling/peeling/flaking/etc.	0
h) Absorber tubes and headers/Flow passages/hoses inside the collector: Deformation/corrosion/leakage/loss of bonding/irreversible swelling/etc.	0
i) Absorber mountings: Permanent deformation/corrosion/rupture/etc.	0
j) Insulation: Water retention/outgassing/swelling/degradation/scorching/singeing/other detri- mental changes that could adversely affect collector/performance/fouling/etc.	0
 k) Corrosion and other deterioration caused by chemical action. Anywhere in the collector: Corrosion is considered severe if it impairs the function of the collector or if there is evidence that it will progress 	0
I) Excessive retention of water anywhere in the collector	0
m) Heat pipes: Loss of fluid/loss of pressure/severe deformation/etc.	0
n) Self-protection systems: Any problem	0
o) Other components. Any other abnormality resulting in a reduction of thermal performance or service lifetime.	0

Table 9: Final inspection

- 0 No problem (or element is not existing)
- 1 Minor problem
- 2 Major failure

The validity and authenticity of this report can be checked anytime www.spf.ch/i-Report Name: iC1916.pdf

INSTITUT FÜR SOLARTECHNIK

4.19.2 Test results

4.19.2.1 Major failures

- A "major failure" rating is mandatory in case of (but not limited to):
- breaking or permanent deformation of the cover or the cover fixing;
- liquid channel leakage;
- any deformation such that permanent contact between absorber and cover is established;
- breaking or severe deformation of collector fixing points or of the collector box;
- vacuum loss, loss of gas filling
- dissolution of absorber coating
- accumulation of humidity in form of permanent condensate on the inside of the transparent cover or permanent local retention of water excessing 25 ml anywhere in the collector.

Test result

No major failure

Annex A Illustrations and photographs

Figure 5: Typical collector field (photo by the manufacturer)

INSTITUT FÜR SOLARTECHNIK

Figure 6: Collector installed on the SPF solar simulator

Figure 7: Collector installed on the SPF outdoor test rig

Figure 8: Hydraulic flow scheme

Figure 9: Photo of collector mounting using the original mounting profiles and mounting parts.

INSTITUT FÜR SOLARTECHNIK

Figure 10: Collector under positive load test of 2400 Pa

Figure 12: Collector in rain test

Figure 11: Collector under negative load test of 2400 Pa

Annex B Technical drawings and specifications

B.1Technical drawings							
Drawing number or drawing name	Date of revision						
Solar Klemmprofil N87678	29.08.2022						
Solar Sattelprofil N87677	26.08.2022						
Kupferrohr							

Table 10: Technical drawings

B.2Specifications

Document name	Date of revision		
PV Module Datasheet in Annex C	Release BSMXXG12- 54HPH(405-425W)-2022- 01-Rev01-EN		
Kupferrohr R1001	26.06.2018		
Klebstoff Sikasil® AS-785 Produktdatenblatt	Version 3 (01 / 2014)		
Sikasil® AS-785, Produkt Information für die Solar Industrie	Version 1 (07 / 2009)		

Table 11: Specifications

B.3Bill of materials

Document name	Date of revision		
20230607_Stückliste BlackDiamond BSM-425_MG	2023.06.07		

Table 12: Bill of materials

The validity and authenticity of this report can be checked anytime www.spf.ch/i-Report Name: iC1916.pdf

Password: PA48kv7g

INSTITUT FÜR SOLARTECHNIK

HEX ₅

www.bluesunpv.com

SPECIFICATIONS

Module Type		BSM405G12-54HPH		BSM410G12-54HPH		BSM415G12-54HPH		BSM420G12-54HPH		BSM425G12-54HPH	
		STC	NMOT								
Maximum Power	(Pmax/W)	405	302	410	306	415	310	420	314	425	318
Operating Voltage	(Vmpp/V)	31.24	29.2	31.43	29.3	31.64	29.6	31.83	29.8	32.03	30.0
Operating Current	(Impp/A)	12.97	10.36	13.05	10.42	13.13	10.48	13.21	10.54	13.29	10.60
Open-Circuit Voltage	(Voc/V)	37.25	35.10	37.50	35.30	37.75	35.50	38.00	35.70	38.25	35.90
Short-Circuit Current	(lsc/A)	13.86	11.17	13.94	11.24	14.02	11.30	14.10	11.36	14.18	11.42
Module Efficiency	ηm(%)	20.7		21.0		21.3		21.5		21.7	

STC: Irradiance 1000/Wm , Cell Temperature 25°C, Air Mass AM1.5 NMOT: Irradiance at 800/Wm , Ambient Temperatue 20°C, Air Mass AM1.5, Wind Speed 1m/s

I-V CURVE

BSM410G12-54 HPH

ENGINEERING DRAWINGS

MECHANICAL SPECIFICATION

Cell Type	Monocrystalline		
Cell Dimensions	182*182mm		
Cell Arrangement	108 (6*18)		
Weight	21.5kg		
Module Dimensions	1722*1134*30mm		
Cable Length	300mm		
Cable Cross Section Size	TUV: 4mm²(0.006inches²)/UL: 12AWG		
Front Glass	3.2mm (0.13inches) AR Coating Tempered Glass		
No. of Bypass Diodes	3		
Packing Configuration	36pcs/carton, 936pcs/40hq		
Frame	Anodized Aluminium Alloy		
Junction Box	IP68		
*Data contained in these specifications is subject to change without notice. Bluesun Solar reserves the right to final interpretation of content.			

OPERATING CONDITIONS

Maximun System Voltage	1000V/1500V/DC(IEC)
Operating Temperature	-40°C~ +85°C
Maximun Series Fuse	25A
Static Loading	Snow Loading: 5400Pa/ Wind Loading: 2400Pa
Conductivity at Ground	≤0.1Ω
Safety Class	Ш
Resistance	≥100MΩ
Connector	T01/LJQ-3-CSY/MC4/MC4-EVO2

TEMPERATURE COEFFICIENT

Temperature Coefficient Pmax	-0.35%/°C
Temperature Coefficient Voc	-0.26%/°C
Temperature Coefficient Isc	+0.048%/°C
NMOT	43±2°C

BLUESUN SOLAR CO., L'ID Tel-98 (158) 5821 597 Fac-96 (157) 5455 5651 E-mail find@husury com Add1499 Zheming Read, Shuahan District 200 51 Hefel/China

*Release BSMXXG12-54HPH(405-425W)-2022-01-Rev01-EN

The validity and authenticity of this report can be checked anytime www.spf.ch/i-Report Name: iC1916.pdf